Deep learning-based decision support system for weeds detection in wheat fields

Brahim Jabir, Noureddine Falih

Abstract


In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.

Keywords


convolutional neural network; decision-making; deep learning; precision farming; Raspberry; weeds detection;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i1.pp816-825

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).