Robot for plastic garbage recognition
Abstract
Waste and related threats are becoming more and more severe problems in environmental security. There is growing attention in waste management globally, both in developing techniques to decrease their quantity and those correlated to their neutralization and commercial use. The basic segregation process of waste due to the type of material is insufficient, as we can reuse only some kinds of plastic. There are difficulties with the effective separation of the different kinds of plastic; therefore, we should develop modern techniques for sorting the plastic fraction. One option is to use deep learning and a convolutional neural network (CNN). The main problem that we considered in this article is creating a method for automatically segregating plastic waste into seven specific subcategories based on the camera image. The technique can be applied to the mobile robot for gathering waste. It would be helpful at the terrain and the sorting plants. The paper presents a 15-layer convolutional neural network capable of recognizing seven plastic materials with good efficiency.
Keywords
artificial intelligence; deep learning convolutional neural network; environment protection; image processing; waste management;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i3.pp2425-2431
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).