Automatic recognition of Arabic alphabets sign language using deep learning

Rehab Mustafa Duwairi, Zain Abdullah Halloush

Abstract


Technological advancements are helping people with special needs overcome many communications’ obstacles. Deep learning and computer vision models are innovative leaps nowadays in facilitating unprecedented tasks in human interactions. The Arabic language is always a rich research area. In this paper, different deep learning models were applied to test the accuracy and efficiency obtained in automatic Arabic sign language recognition. In this paper, we provide a novel framework for the automatic detection of Arabic sign language, based on transfer learning applied on popular deep learning models for image processing. Specifically, by training AlexNet, VGGNet and GoogleNet/Inception models, along with testing the efficiency of shallow learning approaches based on support vector machine (SVM) and nearest neighbors algorithms as baselines. As a result, we propose a novel approach for the automatic recognition of Arabic alphabets in sign language based on VGGNet architecture which outperformed the other trained models. The proposed model is set to present promising results in recognizing Arabic sign language with an accuracy score of 97%. The suggested models are tested against a recent fully-labeled dataset of Arabic sign language images. The dataset contains 54,049 images, which is considered the first large and comprehensive real dataset of Arabic sign language to the furthest we know.

Keywords


AlexNet; Arabic sign language; assistive technology; GoogleNet/Inception; VGGNet;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i3.pp2996-3004

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).