Proportional fair buffer scheduling algorithm for 5G enhanced mobile broadband

Asmae Mamane, M. Fattah, M. El Ghazi, Y. Balboul, M. El Bekkali, S. Mazer

Abstract


The impending next generation of mobile communications denoted 5G intends to interconnect user equipment, things, vehicles, and cities. It will provide an order of magnitude improvement in performance and network efficiency, and different combinations of use cases enhanced mobile broadband (eMBB), ultra reliable low latency communications (URLLC), massive internet of things (mIoT) with new capabilities and diverse requirements. Adoption of advanced radio resource management procedures such as packet scheduling algorithms is necessary to distribute radio resources among different users efficiently. The proportional fair (PF) scheduling algorithm and its modified versions have proved to be the commonly used scheduling algorithms for their ability to provide a tradeoff between throughput and fairness. In this article, the buffer status is combined with the PF metric to suggest a new scheduling algorithm for efficient support for eMBB. The effectiveness of the proposed scheduling strategy is proved through à comprehensive experimental analysis based on the evaluation of different quality of service key performance indicators (QoS KPIs) such as throughput, fairness, and buffer status.

Keywords


5G; downlink; eMBB; resource allocation; scheduling algorithm;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i5.pp4165-4173

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).