Hyperparameter optimization using custom genetic algorithm for classification of benign and malicious traffic on internet of things–23 dataset

Karthikayini Thavasimani, Nuggehalli Kasturirangan Srinath

Abstract


Hyperparameter optimization is one of the main challenges in deep learning despite its successful exploration in many areas such as image classification, speech recognition, natural language processing, and fraud detections. Hyperparameters are critical as they control the learning rate of a model and should be tuned to improve performance. Tuning the hyperparameters manually with default values is a challenging and time-intensive task. Though the time and efforts spent on tuning the hyperparameters are decreasing, it is always a burden when it comes to a new dataset or solving a new task or improving the existing model. In our paper, we propose a custom genetic algorithm to auto-tune the hyperparameters of the deep learning sequential model to classify benign and malicious traffic from internet of things-23 dataset captured by Czech Technical University, Czech Republic. The dataset is a collection of 30.85 million records of malicious and benign traffic. The experimental results show a promising outcome of 98.9% accuracy.

Keywords


Auto tuning hyperparameters; Bots; Custom genetic algorithm; Cyber-attacks; Hyperparameters; Neural networks; Optimization;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i4.pp4031-4041

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).