Comparative study to realize an automatic speaker recognition system
Abstract
In this research, we present an automatic speaker recognition system based on adaptive orthogonal transformations. To obtain the informative features with a minimum dimension from the input signals, we created an adaptive operator, which helped to identify the speaker’s voice in a fast and efficient manner. We test the efficiency and the performance of our method by comparing it with another approach, mel-frequency cepstral coefficients (MFCCs), which is widely used by researchers as their feature extraction method. The experimental results show the importance of creating the adaptive operator, which gives added value to the proposed approach. The performance of the system achieved 96.8% accuracy using Fourier transform as a compression method and 98.1% using Correlation as a compression method.
Keywords
Adaptive orthogonal transform; Automatic speech recognition; DTW; MFCCs; Speaker recognition system
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i1.pp376-382
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).