Two-dimensional satellite image compression using compressive sensing

Gunasheela Keragodu Shivanna, Haranahalli Shreenivasamurthy Prasantha

Abstract


Compressive sensing is receiving a lot of attention from the image processing research community as a promising technique for image recovery from very few samples. The modality of compressive sensing technique is very useful in the applications where it is not feasible to acquire many samples. It is also prominently useful in satellite imaging applications since it drastically reduces the number of input samples thereby reducing the storage and communication bandwidth required to store and transmit the data into the ground station. In this paper, an interior point-based method is used to recover the entire satellite image from compressive sensing samples. The compression results obtained are compared with the compression results from conventional satellite image compression algorithms. The results demonstrate the increase in reconstruction accuracy as well as higher compression rate in case of compressive sensing-based compression technique.

Keywords


Compressive sensing; Interior point method; Satellite image

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i1.pp311-319

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).