Four dimensional hyperchaotic communication system based on dynamic feedback synchronization technique for image encryption systems
Abstract
This paper presents the design and simulation of a hyperchaotic communication system based on four dimensions (4D) Lorenz generator. The synchronization technique that used between the master/transmitter and the slave/receiver is based on dynamic feedback modulation technique (DFM). The mismatch error between the master dynamics and slave dynamics are calculated continuously to maintain the sync process. The information signal (binary image) is masked (encrypted) by the hyperchaotic sample x of Lorenz generator. The design and simulation of the overall system are carried out using MATLAB Simulink software. The simulation results prove that the system is suitable for securing the plain-data, in particular the image data with a size of 128×128 pixels within 0.1 second required for encryption, and decryption in the presence of the channel noise. The decryption results for gray and colored images show that the system can accurately decipher the ciphered image, but with low level distortion in the image pixels due to the channel noise. These results make the proposed cryptosystem suitable for real time secure communications.
Keywords
dynamic feedback modulation; hyperchaotic; hyperchaotic synchronization; Lorenz generator; MATLAB Simulink;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i1.pp957-965
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).