Health monitoring catalogue based on human activity classification using machine learning

Ansam A. Abdulhussien, Oday A. Hassen, Charu Gupta, Deepali Virmani, Akshara Nair, Prachi Rani


In recent times, fitness trackers and smartphones equipped with different sensors like gyroscopes, accelerometers, global positioning system sensors and programs are used for recognizing human activities. In this paper, the results collected from these devices are used to design a system that can assist an application in monitoring a person’s health. The proposed system takes the raw sensor signals as input, preprocesses it and using machine learning techniques outputs the state of the user with minimum error. The objective of this paper is to compare the performance of different algorithms logistic regression (LR), support vector machine (SVM), k-nearest neighbor (k-NN) and random forest (RF). The algorithms are trained and tested with an original number of features as well as with transformed number of features (using linear discriminant analysis). The data with a smaller number of features is then used to visualize the high dimensional data. In this paper, each data point is mapped in the high dimensional data to two-dimensional data using t-distributed stochastic neighbor embedding technique. Overall, the first high dimensional data is visualized and compared with model’s performance with different algorithms and different number of coordinates.


Human activity recognition; Linear discriminant analysis; Stochastic neighbor embedding; T-distributed;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).