An internet of things framework for real-time aquatic environment monitoring using an Arduino and sensors

Md. Monirul Islam, Mohammad Abul Kashem, Jia Uddin


Aquaculture is the farming of aquatic organisms in natural, controlled marine and freshwater environments. The real-time monitoring of aquatic environmental parameters is very important in fish farming. Internet of things (IoT) can play a vital role in the real-time monitoring. This paper presents an IoT framework for the efficient monitoring and effective control of different aquatic environmental parameters related to the water. The proposed system is implemented as an embedded system using sensors and an Arduino. Different sensors including pH, temperature, and turbidity, ultrasonic are placed in cultivating pond water and each of them is connected to a common microcontroller board built on an Arduino Uno. The sensors read the data from the water and store it as a comma-separated values (CSV) file in an IoT cloud named ThingSpeak through the Arduino microcontroller. To validate the experiment, we collected data from 5 ponds of various sizes and environments. After experimental evaluation, it was observed among 5 ponds, only three ponds were perfect for fish farming, where these 3 ponds only satisfied the standard reference values of pH (6.5-8.5), temperature (16-24 °C), turbidity (below 10 ntu), conductivity (970-1825 μS/cm), and depth (1-4) meter. At the end of this paper, a complete hardware implementation of this proposed IoT framework for a real-time aquatic environment monitoring system is presented.


Arduino and sensors; fish farming; real-time monitoring system; internet of things;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).