Compressor based approximate multiplier architectures for media processing applications

Uppugunduru Anil Kumar, Syed Ershad Ahmed


Approximate computing is an attractive technique to gain substantial improvement in the area, speed, and power in applications where exact computation is not required. This paper proposes two improved multiplier designs based on a new 4:2 approximate compressor circuit to simplify the hardware at the partial product reduction stage. The proposed multiplier designs are targeted towards error-tolerant applications. Exhaustive error and hardware analysis has been carried out on the existing and proposed multiplier designs. The results prove that the proposed approximate multiplier architecture performs better than the existing architectures without significant compromise on quality metrics. Experimental results show that die-area and power consumed are reduced upto 28%, and 25.29% respectively in comparison with the existing designs without significant compromise on accuracy.


approximate computing multiplier; compressor partial product generation; partial product reduction;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).