Spiking ink drop spread clustering algorithm and its memristor crossbar conceptual hardware design
Abstract
In this study, a novel neuro-fuzzy clustering algorithm is proposed based on spiking neural network and ink drop spread (IDS) concepts. The proposed structure is a one-layer artificial neural network with leaky integrate and fire (LIF) neurons. The structure implements the IDS algorithm as a fuzzy concept. Each training data will result in firing the corresponding input neuron and its neighboring neurons. A synchronous time coding algorithm is used to manage input and output neurons firing time. For an input data, one or several output neurons of the network will fire; confidence degree of the network to outputs is defined as the relative delay of the firing times with respect to the synchronous pulse. A memristor crossbar-based hardware is utilized for hardware implementation of the proposed algorithm. The simulation result corroborates that the proposed algorithm can be used as a neuro-fuzzy clustering and vector quantization algorithm.
Keywords
Active learning method; ink drop spread; memristor; neuro-fuzzy clustering; spiking neural network
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp7125-7136
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).