Artistic feasibility research on a standalone hybrid solar/wind system based on IncCond algorithm under variable load demands-a case study: South Algeria

Oumelkhier Bouchiba, Tahar Merizgui, Bachir Gaoui, Saliha Chettih, Ali Cheknane

Abstract


The aim of this research study is to describe the hybrid renewable energy resources, the photovoltaic and the wind turbine are utilized to produce AC power for a Sahara Hassi R'Mel region in south of Algeria is optimally designed. Hybrid power generation systems are an operative solution for the variable generated power of renewable energy sources. In the new design, the ability circuit and the surveillance regulation of the presented grid-connected hybrid power system simulation is examined via MATLAB/Simulink. To detect the feasibility of the controlled system, this system is studied under various solar radiation and wind speed profiles. On the basis of the results, good tracking with a high accuracy rate is obtained after using filtering component by enhancing the different topology configurations in the expression of comparison voltage (V), and power (W). Overtime, the overall system efficiency is enhanced compared to the MPPT control system. The obtained simulation results for the incremental conductance PV/Wind MPPT controller have accomplished high effective system achievements. IncCond method is appropriate for working in vastly variable weather conditions with easy design, high tracking velocity, and minimum step count.

Keywords


Maximum power point tracker; Performance; Photovoltaic; Wind energy

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i6.pp4649-4658

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).