Recommendation system using the k-nearest neighbors and singular value decomposition algorithms
Abstract
Nowadays, recommendation systems are used successfully to provide items (example: movies, music, books, news, images) tailored to user preferences. Amongst the approaches existing to recommend adequate content, we use the collaborative filtering approach of finding the information that satisfies the user by using the reviews of other users. These reviews are stored in matrices that their sizes increase exponentially to predict whether an item is relevant or not. The evaluation shows that these systems provide unsatisfactory recommendations because of what we call the cold start factor. Our objective is to apply a hybrid approach to improve the quality of our recommendation system. The benefit of this approach is the fact that it does not require a new algorithm for calculating the predictions. We are going to apply two algorithms: k-nearest neighbours (KNN) and the matrix factorization algorithm of collaborative filtering which are based on the method of (singular-value-decomposition). Our combined model has a very high precision and the experiments show that our method can achieve better results.
Keywords
collaborative filtering; KNN; matrix factorization items; recommandation system; SVD;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v11i6.pp5541-5548
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).