Detection of internal and external faults of single-phase induction motor using current signature

Marwan Abdulkhaleq AL-Yoonus, Omar Sharaf Al-deen Alyozbaky


The main aim of this work is to analyze the input current waveform for a single-phase induction capacitor-run motor (SIMCR) to detect the faults. Internal and external faults were applied to the SIMCR and the current was measured. An armature (broken rotor bar) and bearing faults were applied to the SIMCR. A microcontroller was used to record the motor current signal and MATLAB software was used to analyze it with the different types of fault with varying load operations. Various values of the running capacitor were used to investigate the effect of these values on the wave-current shape. Total harmonic distortion (THD) for the voltage and current was measured. A deep demonstration of the experimental results was also provided for a better understanding of the mechanisms of bearing and armature faults (broken rotor bars) and the vibration was recorded. Spectral and power analyses revealed the difference in total harmonic distortion. The proposed method in this paper can be used in various industrial applications and this technique is quite cheap and helps most of the researchers and very effectual.


current signature; harmonic; induction motor; microcontroller; running capacitor;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).