Comparative and comprehensive study of linear antenna arrays’ synthesis

Asem S. Al-Zoubi, Anas Atef Amaireh, Nihad I. Dib

Abstract


In this paper, a comparative and comprehensive study of synthesizing linear antenna array (LAA) designs, is presented. Different desired objectives are considered in this paper; reducing the maximum sidelobe radiation pattern (i.e., pencil-beam pattern), controlling the first null beamwidth (FNBW), and imposing nulls at specific angles in some designs, which are accomplished by optimizing different array parameters (feed current amplitudes, feed current phase, and array elements positions). Three different optimization algorithms are proposed in order to achieve the wanted goals; grasshopper optimization algorithms (GOA), antlion optimization (ALO), and a new hybrid optimization algorithm based on GOA and ALO. The obtained results show the effectiveness and robustness of the proposed algorithms to achieve the wanted targets. In most experiments, the proposed algorithms outperform other well-known optimization methods, such as; Biogeography based optimization (BBO), particle swarm optimization (PSO), firefly algorithm (FA), cuckoo search (CS) algorithm, genetic algorithm (GA), Taguchi method, self-adaptive differential evolution (SADE), modified spider monkey optimization (MSMO), symbiotic organisms search (SOS), enhanced firefly algorithm (EFA), bat flower pollination (BFP) and tabu search (TS) algorithm.

Keywords


antenna arrays; antlion optimization algorithm; grasshopper optimization algorithm; linear antenna arrays; stochastic algorithms;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i3.pp2645-2654

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).