A flexible method to create wave file features

Ghazi M. J. Qaryouti, Tariq M. Younes

Abstract


Digital audio signal is one of the most important data type at present, it is used in various vital applications, such as human knowledge, security and banking applications, most applications require signal identification and recognition, and to increase the efficiency of these applications we must seek a method to represent the audio file by a small set of values called a features vector. In this paper research we will introduce an enhanced method of features extraction based on k-mean clustering. The method will be tested and implemented to show how the proposed method can reduce the efforts of voice identification, and can minimize the recognition time a set of voice extracted features must be used instead of using the voice wave file.

Keywords


clustering; crest factor; dynamic range; histogram; k-mean clustering

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i2.pp1311-1318

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).