Simulation of a microgrid for a non-interconnected zone that integrates renewable energies
Abstract
This paper develops a simulation of a small electrical network (Microgid) that integrates renewable energies, the model of the micro network is made up of a solar energy source, a wind energy source, an energy storage element, a non-renewable source such as a diesel generator. The model of the microgrid represent a non-interconnected area from the electrical network in Colombia. The non-interconnected areas sometimes depend on unreliable connections to the grid integration of renewable energies could be the best option to guarantee energy in these sectors and allow generating projects with social impact. A possible solution to this deficit of energy is to supplement the production of energy with renewable energy plants from resources as sun or wind. The simulated model allowed to study the effects of the network in island mode and in interconnected mode, showing the imbalances that can be obtained by integrating renewable energies and storage systems. It is verified that with an inclusion of more than 30% of power in renewable energies there is the possibility of having load imbalances, which affect the frequency and cause instability in the network. It also verifies how a control system can regulate the load balance but must interact with the other energy sources.
Keywords
energy; non-interconnected; renewable; smart grid;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v11i1.pp201-216
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).