Comparative study on machine learning algorithms for early fire forest detection system using geodata
Abstract
Forest fires have caused considerable losses to ecologies, societies and economies worldwide. To minimize these losses and reduce forest fires, modeling and predicting the occurrence of forest fires are meaningful because they can support forest fire prevention and management. In recent years, the convolutional neural network (CNN) has become an important state-of-the-art deep learning algorithm, and its implementation has enriched many fields. Therefore, a competitive spatial prediction model for automatic early detection of wild forest fire using machine learning algorithms can be proposed. This model can help researchers to predict forest fires and identify risk zonas. System using machine learning algorithm on geodata will be able to notify in real time the interested parts and authorities by providing alerts and presenting on maps based on geographical treatments for more efficacity and analyzing of the situation. This research extends the application of machine learning algorithms for early fire forest prediction to detection and representation in geographical information system (GIS) maps.
Keywords
Fire forest detection; Machine learning; Voronoi; Support vector machine; Random forest
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i5.pp5507-5513
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).