Sentiment analysis of comments in social media
Abstract
Social media platforms are witnessing a significant growth in both size and purpose. One specific aspect of social media platforms is sentiment analysis, by which insights into the emotions and feelings of a person can be inferred from their posted text. Research related to sentiment analysis is acquiring substantial interest as it is a promising filed that can improve user experience and provide countless personalized services. Twitter is one of the most popular social media platforms, it has users from different regions with a variety of cultures and languages. It can thus provide valuable information for a diverse and large amount of data to be used to improve decision making. In this paper, the sentiment orientation of the textual features and emoji-based components is studied targeting “Tweets” and comments posted in Arabic on Twitter, during the 2018 world cup event. This study also measures the significance of analyzing texts including or excluding emojis. The data is obtained from thousands of extracted tweets, to find the results of sentiment analysis for texts and emojis separately. Results show that emojis support the sentiment orientation of the texts and that texts or emojis cannot separately provide reliable information as they complement each other to give the intended meaning.
Keywords
Complex networks; Sentimental analysis; Social media platform; tweets
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i6.pp5917-5922
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).