Machine learning model for clinical named entity recognition

Ravikumar J., Ramakanth Kumar P.

Abstract


To extract important concepts (named entities) from clinical notes, most widely used NLP task is named entity recognition (NER). It is found from the literature that several researchers have extensively used machine learning models for clinical NER.The most fundamental tasks among the medical data mining tasks are medical named entity recognition and normalization. Medical named entity recognition is different from general NER in various ways. Huge number of alternate spellings and synonyms create explosion of word vocabulary sizes. This reduces the medicine dictionary efficiency. Entities often consist of long sequences of tokens, making harder to detect boundaries exactly. The notes written by clinicians written notes are less structured and are in minimal grammatical form with cryptic short hand. Because of this, it poses challenges in named entity recognition. Generally, NER systems are either rule based or pattern based. The rules and patterns are not generalizable because of the diverse writing style of clinicians. The systems that use machine learning based approach to resolve these issues focus on choosing effective features for classifier building. In this work, machine learning based approach has been used to extract the clinical data in a required manner

Keywords


clinical NER; machine learning; named entity recognition; natural language processing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i2.pp1689-1696

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).