Leveraging graph-based semantic annotation for the identification of cause-effect relations
Abstract
This research is related to language article in Indonesia that discuss about causality relationship research used as public health surveillance information monitoring system. Utilization of this research is suitability of feature selection, phrase annotation, paragraph annotation, medical element annotation and graph-based semantic annotation. Evaluation of system performance is done by intrinsic approach using the Naive Bayes Multinomial method. The results obtained sequentially for recall, precision and f-measure are 0.924, 0.905, and 0.910.
Keywords
Causal; Phrase annotation; Paragraph annotation; Medical element annotation; Semantic annotation
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i4.pp4352-4362
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).