Comparison between handwritten word and speech record in real-time using CNN architectures

Javier Orlando Pinzón-Arenas, Robinson Jiménez-Moreno


This paper presents the development of a system of comparison between words spoken and written by means of deep learning techniques. There are used 10 words acquired by means of an audio function and, these same words, are written by hand and acquired by a webcam, in such a way as to verify if the two data match and show whether or not it is the required word. For this, 2 different CNN architectures were used for each function, where for voice recognition, a suitable CNN was used to identify complete words by means of their features obtained with mel frequency cepstral coefficients, while for handwriting, a faster R-CNN was used, so that it both locates and identifies the captured word. To implement the system, an easy-to-use graphical interface was developed, which unites the two neural networks for its operation. With this, tests were performed in real-time, obtaining a general accuracy of 95.24%, allowing showing the good performance of the implemented system, adding the response speed factor, being less than 200 ms in making the comparison.


Speech recognition; Handwriting recognition; CNN; Faster R-CNN

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).