Speech emotion recognition based on SVM and KNN classifications fusion

Mohammed Jawad Al Dujaili, Abbas Ebrahimi-Moghadam, Ahmed Fatlawi


Recognizing the sense of speech is one of the most active research topics in speech processing and in human-computer interaction programs. Despite a wide range of studies in this scope, there is still a long gap among the natural feelings of humans and the perception of the computer. In general, a sensory recognition system from speech can be divided into three main sections: attribute extraction, feature selection, and classification. In this paper, features of fundamental frequency (FEZ) (F0), energy (E), zero-crossing rate (ZCR), fourier parameter (FP), and various combinations of them are extracted from the data vector, Then, the principal component analysis (PCA) algorithm is used to reduce the number of features. To evaluate the system performance. The fusion of each emotional state will be performed later using support vector machine (SVM), K-nearest neighbor (KNN), In terms of comparison, similar experiments have been performed on the emotional speech of the German language, English language, and significant results were obtained by these comparisons.


FEZ; FP; KNN; PCA; speech emotion; SVM

Full Text:


DOI: http://doi.org/10.11591/ijece.v11i2.pp1259-1264

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).