A novel hybrid approach of SVM combined with NLP and probabilistic neural network for email phishing
Abstract
Keywords
Full Text:
PDFReferences
APWG. Anti-phishing working: http://www.antiphishing.org
Phishing Activity Trends Report 2014: http://docs.apwg.org/reports/apwg_trends_report_q1_2014.pdf.
Hamid, I. R. A., & Abawajy, J. (2011, October). Hybrid feature selection for phishing email detection. In International Conference on Algorithms and Architectures for Parallel Processing (pp. 266-275). Springer, Berlin, Heidelberg.
Zareapoor, M., & Seeja, K. R. (2015). Feature extraction or feature selection for text classification: A case study on phishing email detection. International Journal of Information Engineering and Electronic Business, 7(2), 60.
Dong, X., Clark, J. A., & Jacob, J. (2008, May). Modelling user-phishing interaction. In 2008 conference on human system interactions (pp. 627-632). IEEE.
Yasin, A., & Abuhasan, A. (2016). An intelligent classification model for phishing email detection. arXiv preprint arXiv:1608.02196.
Akinyelu, A. A., & Adewumi, A. O. (2014). Classification of phishing
email using random forest machine learning technique. Journal of Applied Mathematics, 2014.
Smadi, S., Aslam, N., Zhang, L., Alasem, R., & Hossain, M. A. (2015, December). Detection of phishing emails using data mining algorithms. In 2015 9th International Conference on Software, Knowledge, Information Management and Applications (SKIMA) (pp. 1-8). IEEE.
Stembert, N., Padmos, A., Bargh, M. S., Choenni, S., & Jansen, F. (2015, September). A study of preventing email (spear) phishing by enabling human intelligence. In 2015 European Intelligence and Security Informatics Conference (pp. 113-120). IEEE.
Butavicius, M., Parsons, K., Pattinson, M., & McCormac, A. (2016). Breaching the human firewall: Social engineering in phishing and spear-phishing emails. arXiv preprint arXiv:1606.00887.
Volkamer, M., Renaud, K., Reinheimer, B., & Kunz, A. (2017). User experiences of TORPEDO: tooltip-powered phishing email detection. Computers & Security, 71, 100-113.
Hu, H., & Wang, G. (2018). End-to-end measurements of email spoofing attacks. In 27th {USENIX} Security Symposium ({USENIX} Security 18) (pp. 1095-1112).
Williams, E. J., & Polage, D. (2019). How persuasive is phishing email? The role of authentic design, influence and current events in email judgements. Behaviour & Information Technology, 38(2), 184-197.
Ferreira, A., & Teles, S. (2019). Persuasion: How phishing emails can influence users and bypass security measures. International Journal of Human-Computer Studies, 125, 19-31.
Verma, R., & Rai, N. (2015, July). Phish-idetector: Message-id based automatic phishing detection. In 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE) (Vol. 4, pp. 427-434). IEEE.
Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining (adaptive computation and machine learning). MIT Press.
Basnet, R., Mukkamala, S., & Sung, A. H. (2008). Detection of phishing attacks: A machine learning approach. In Soft Computing Applications in Industry (pp. 373-383). Springer, Berlin, Heidelberg.
Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
DOI: http://doi.org/10.11591/ijece.v10i1.pp486-493
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).