Detection of the botnets’ low-rate DDoS attacks based on self-similarity
Abstract
An article presents the approach for the botnets’ low-rate a DDoS-attacks detection based on the botnet’s behavior in the network. Detection process involves the analysis of the network traffic, generated by the botnets’ low-rate DDoS attack. Proposed technique is the part of botnets detection system – BotGRABBER system. The novelty of the paper is that the low-rate DDoS-attacks detection involves not only the network features, inherent to the botnets, but also network traffic self-similarity analysis, which is defined with the use of Hurst coefficient. Detection process consists of the knowledge formation based on the features that may indicate low-rate DDoS attack performed by a botnet; network monitoring, which analyzes information obtained from the network and making conclusion about possible DDoS attack in the network; and the appliance of the security scenario for the corporate area network’s infrastructure in the situation of low-rate attacks.
Keywords
Botnet detection; Cyber attack; Hurst coefficient; Low-rate DDoS attack; Network traffic self-similarity
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i4.pp3651-3659
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).