Framework for propagating stress control message using heartbeat based IoT remote monitoring analytics

Eisha Akanksha


Abnormal level of stress is the root indicator factor to have significant impact over the health of heart and there is a close relationship between the stress levels with heart rate. Review of the existing literature showcase that there has been various work that has been carried out towards investigation of considering heart rate with an internet-of-things (IoT) system. Apart from this, existing system doesnt offer any instantaneous solution where certain intimation is offered in real-time to the user with wearables as a solution to control the stress condition. Therefore, the current paper introduces a novel framework where the sampled heart rates of the patients are captured by IoT deivices. The aggregated data are further forwarded to the cloud analytic system that uses correlation to extract the appropriate message. The system after being applied with teh machine learning approach could further extract the elite outcome followed by forwarding the contextual data to teh user. Using an analytical modelliig, the proposed system shows that it offers better accuracy and reduced processing time when compared with other machine learning approach and thereby it proves to be cost effective solution in IoT system over medical case study.


Heartbeat; Internet-of-things; Machine learning; Medical IoT; Remote monitoring

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).