Benchmarking open source deep learning frameworks

Ghadeer Al-Bdour, Raffi Al-Qurran, Mahmoud Al-Ayyoub, Ali Shatnawi


Deep Learning (DL) is one of the hottest fields. To foster the growth of DL, several open source frameworks appeared providing implementations of the most common DL algorithms. These frameworks vary in the algorithms they support and in the quality of their implementations. The purpose of this work is to provide a qualitative and quantitative comparison among three such frameworks: TensorFlow, Theano and CNTK. To ensure that our study is as comprehensive as possible, we consider multiple benchmark datasets from different fields (image processing, NLP, etc.) and measure the performance of the frameworks' implementations of different DL algorithms. For most of our experiments, we find out that CNTK's implementations are superior to the other ones under consideration.


TensorFlow; Theano; CNTK; Performance Comparison

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).