Human activity recognition by using convolutional neural network

Hankil Kim, Sungock Lee, Hoekyung Jung

Abstract


In recent years, many researchers have studied the HAR (Human Activity Recognition) system. HAR using smart home sensor is based on computing in smart environment, and intelligent surveillance system conducts intensive research on peripheral support life. The previous system studied in some of the activities is a fixed motion and the methodology is less accurate. In this paper, vision-based studies using thermal imaging cameras improve the accuracy of motion recognition in intelligent surveillance systems. We use one of the deep learning architectures widely used in image recognition systems called Convolutional Neural Networks (CNN). Therefore, we use CNN and thermal cameras to provide accuracy and many features through the proposed method.


Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i6.pp5270-5276

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).