Automatic segmentation of wrist bone fracture area by K-means pixel clustering from X-ray image

Kwang Baek Kim, Doo Heon Song, Sang-Seok Yun

Abstract


Early detection of subtle fracture is important particularly for the senior citizens’ quality of life. Naked eye examination from X-ray image may cause false negatives due to operator subjectivity thus computer vision based automatic detection software is much needed in practice.  In this paper, we propose an automatic extraction method for suspisious wrist fracture regions. We apply K-means in pixel clustering to form the candidate part of possible fracture from wrist X-ray image automatically. This method can recover previously detected patterned false cases with edge detection method after fuzzy stretching. The proposed method is successful in 16 out of 20 tested cases in experiment.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i6.pp5205-5210

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).