A computational analysis of short sentences based on ensemble similarity model
Abstract
The rapid development of Internet along with the wide use of social media applications produce huge volume of unstructured data in short text form such as tweets, text snippets and instant messages. This form of data rarely contains repeated word. It presents challenge in sentences similarity analysis as the standard text similarity models merely rely on the number of word occurrence, often resulting unreliable similarity value. Besides, the use of abbreviation, acronyms, slang, smiley, jargon, symbol or non-standard short form also contributes to the difficulty in similarity analysis. Thus, an extended ensemble similarity model approach is proposed. An experimental study has been conducted using datasets of English short sentences. The findings are very encouraging in improving the similarity value for short sentences.
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i6.pp5386-5394
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).