Optimization of discrete wavelet transform features using artificial bee colony algorithm for texture image classification

Fthi M. Albkosh, Muhammad Suzuri Hitam, Wan Nural Jawahir Hj Wan Yussof, Abdul Aziz K Abdul Hamid, Rozniza Ali

Abstract


Selection of appropriate image texture properties is one of the major issues in texture classification. This paper presents an optimization technique for automatic selection of multi-scale discrete wavelet transform features using artificial bee colony algorithm for robust texture classification performance. In this paper, an artificial bee colony algorithm has been used to find the best combination of wavelet filters with the correct number of decomposition level in the discrete wavelet transform.  The multi-layered perceptron neural network is employed as an image texture classifier.  The proposed method tested on a high-resolution database of UMD texture. The texture classification results show that the proposed method could provide an automated approach for finding the best input parameters combination setting for discrete wavelet transform features that lead to the best classification accuracy performance.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i6.pp5253-5262

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).