LSTM deep learning method for network intrusion detection system

Alaeddine Boukhalfa, Abderrahim Abdellaoui, Nabil Hmina, Habiba Chaoui

Abstract


The security of the network has become a primary concern for organizations. Attackers use different means to disrupt services or steal information, these various attacks push to think of a new way to block them all in one manner. In addition, these intrusions can change and penetrate the devices of security. To solve these issues, we suggest, in this paper, a new idea for Network Intrusion Detection System (NIDS) based on Long Short-TermMemory (LSTM) to recognize menaces and to obtain a long-term memory on them, inorder to stop the new attacks that are like the existing ones, and at the sametime, to have a single mean to block intrusions. According to the results of the experiments of detections that we have carried out, the Accuracy reaches upto 99.98 % and 99.93 % for respectively the classification of two classes and several classes, Also the False Positive Rate (FPR) reaches up to only 0,068 % and 0,023 % for respectively the classification of two classes and several classes, which proves that the proposed model is very effective, it has a great ability to memorize and differentiate between normal traffic and attack traffic and its identification is more accurate than other Machine Learning classifiers.

Keywords


Deep learning; LSTM; Machine learning; NIDS; RNN

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i3.pp3315-3322

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).