Towards optimize-ESA for text semantic similarity: A case study of biomedical text
Abstract
Explicit Semantic Analysis (ESA) is an approach to measure the semantic relatedness between terms or documents based on similarities to documents of a references corpus usually Wikipedia. ESA usage has received tremendous attention in the field of natural language processing NLP and information retrieval. However, ESA utilizes a huge Wikipedia index matrix in its interpretation by multiplying a large matrix by a term vector to produce a high-dimensional vector. Consequently, the ESA process is too expensive in interpretation and similarity steps. Therefore, the efficiency of ESA will slow down because we lose a lot of time in unnecessary operations. This paper propose enhancements to ESA called optimize-ESA that reduce the dimension at the interpretation stage by computing the semantic similarity in a specific domain. The experimental results show clearly that our method correlates much better with human judgement than the full version ESA approach.
Keywords
Explicit semantic analysis ESA; Natural language processing NLP; Semantic relatedness; Semantic similarity
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i3.pp2934-2943
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).