Maximize resource utilization based channel access model with presence of reactive jammer for underwater wireless sensor network
Abstract
Underwater sensor networks (UWSNs) are vulnerable to jamming attacks. Especially, reactive jamming which emerged as a greatest security threat to UWSNs. Reactive jammer are difficult to be removed, defended and identified. Since reactive jammer can control and regulate (i.e., the duration of the jam signal) the probability of jamming for maintaining high vulnerability with low detection probability. The existing model are generally designed considering terrestrial wireless sensor networks (TWSNs). Further, these models are limited in their ability to detect jamming correctly, distinguish between the corrupted and uncorrupted parts of a packet, and be adaptive with the dynamic environment. Cooperative jamming model has presented in recent times to utilize resource efficiently. However, very limited work is carried out using cooperative jamming detection. For overcoming research challenges, this work present Maximize Resource Utilization based Channel Access (MRUCA). The MRUCA uses cross layer design for mitigating reactive jammer (i.e., MRUCA jointly optimizes the cooperative hopping probabilities and channel accessibility probabilities of authenticated sensor device). Along with channel, load capacity of authenticated sensor device is estimated to utilize (maximize) resource efficiently. Experiment outcome shows the proposed MRUCA model attain superior performance than state-of-art model in terms of packet transmission, BER and Detection rate.
Keywords
Cooperative communication; Cross layer design; Jamming detection; Medium access control; Reactive jamming; Spatial reuse; Uwsn
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i3.pp3284-3294
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).