Face recognition using selected topographical features

Maitham Ali Naji, Ghalib Ahmed Salman, Muthna Jasim Fadhil


This paper represents a new features selection method to improve an existed feature type. Topographical (TGH) features provide large set of features by assigning each image pixel to the related feature depending on image gradient and Hessian matrix. Such type of features was handled by a proposed features selection method. A face recognition feature selector (FRFS) method is presented to inspect TGH features. FRFS depends in its main concept on linear discriminant analysis (LDA) technique, which is used in evaluating features efficiency. FRFS studies feature behavior over a dataset of images to determine the level of its performance. At the end, each feature is assigned to its related level of performance with different levels of performance over the whole image. Depending on a chosen threshold, the highest set of features is selected to be classified by SVM classifier


Face features; Face recognition; Feature selector; Features performance topographical

Full Text:


DOI: http://doi.org/10.11591/ijece.v10i5.pp4695-4700

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).