Improving the role of language model in statistical machine translation (Indonesian-Javanese)
Abstract
The statistical machine translation (SMT) is widely used by researchers and practitioners in recent years. SMT works with quality that is determined by several important factors, two of which are language and translation model. Research on improving the translation model has been done quite a lot, but the problem of optimizing the language model for use on machine translators has not received much attention. On translator machines, language models usually use trigram models as standard. In this paper, we conducted experiments with four strategies to analyze the role of the language model used in the Indonesian-Javanese translation machine and show improvement compared to the baseline system with the standard language model. The results of this research indicate that the use of 3-gram language models is highly recommended in SMT.
Keywords
Indonesian- Javanese; language model; statistical machine translation;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v10i2.pp2102-2109
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).