A hybrid artificial neural network - genetic algorithm for load shedding

Le Trong Nghia, Quyen Huy Anh, Phung Trieu Tan, N Thai An

Abstract


This paper proposes the method of applying Artificial Neural Network (ANN) with Back Propagation (BP) algorithm in combination or hybrid with Genetic Algorithm (GA) to propose load shedding strategies in the power system. The Genetic Algorithm is used to support the training of Back Propagation Neural Networks (BPNN) to improve regression ability, minimize errors and reduce the training time. Besides, the Relief algorithm is used to reduce the number of input variables of the neural network. The minimum load shedding with consideration of the primary and secondary control is calculated to restore the frequency of the electrical system. The distribution of power load shedding at each load bus of the system based on the phase electrical distance between the outage generator and the load buses. The simulation results have been verified through using MATLAB and PowerWorld software systems. The results show that the Hybrid Gen-Bayesian algorithm (GA-Trainbr) has a remarkable superiority in accuracy as well as training time. The effectiveness of the proposed method is tested on the IEEE 37 bus 9 generators standard system diagram showing the effectiveness of the proposed method.

Keywords


Hybrid algorithm; Load shedding; Genetic Algorithm; Back Propagation Neural Network; Phase Electrical Distance

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i3.pp2250-2258

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).