Optimal design of adaptive power scheduling using modified ant colony optimization algorithm

Vijo M Joy, S. Krishnakumar

Abstract


For generating and distributing an economic load scheduling approach, artificial neural network (ANN) has been introduced, because power generation and power consumption are economically non-identical. An efficient load scheduling method is suggested in this paper. Normally the power generation system fails due to its instability at peak load time. Traditionally, load shedding process is used in which low priority loads are disconnected from sources. The proposed method handles this problem by scheduling the load based on the power requirements. In many countries the power systems are facing limitations of energy. An efficient optimization algorithm is used to periodically schedule the load demand and the generation. Ant colony optimization (ACO) based ANN is used for this optimal load scheduling process. The present work analyse the technical economical and time-dependent limitations. Also the works meets the demanded load with minimum cost of energy. Inorder to train ANN back propagation (BP) technics is used. A hybrid training process is described in this work. Global optimization algorithms are used to provide back propagation with good initial connection weights.

Keywords


Ant colony optimization; Artificial neural networks; Back propagation; Load scheduling; Power management

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i1.pp738-745

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).