The effects of multiple layers feed-forward neural network transfer function in digital based Ethiopian soil classification and moisture prediction

Belete Biazen Bezabeh, Abrham Debasu Mengistu

Abstract


In the area of machine learning performance analysis is the major task in order to get a better performance both in training and testing model. In addition, performance analysis of machine learning techniques helps to identify how the machine is performing on the given input and also to find any improvements needed to make on the learning model. Feed-forward neural network (FFNN) has different area of applications, but the epoch convergences of the network differs from the usage of transfer function. In this study, to build the model for classification and moisture prediction of soil, rectified linear units (ReLU), Sigmoid, hyperbolic tangent (Tanh) and Gaussian transfer function of feed-forward neural network had been analyzed to identify an appropriate transfer function. Color, texture, shape and brisk local feature descriptor are used as a feature vector of FFNN in the input layer and 4 hidden layers were considered in this study. In each hidden layer 26 neurons are used. From the experiment, Gaussian transfer function outperforms than ReLU, sigmoid and tanh transfer function. But the convergence rate of Gaussian transfer function took more epoch than ReLU, Sigmoid and tanh.

Keywords


Tanh transfer function; Sigmoid transfer function; Gaussian transfer function; ReLU transfer function; FFNN

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i4.pp4073-4079

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).