Control of variable reluctance machine (8/6) by artificiel intelligence techniques

Mama Chouitek, Noureddine Benouzza, Benaissa Bekouche

Abstract


The non-linearity of variable-Reluctance Machine (8/6) and the dependence of machine inductance on rotor position and applied current complicate the development of the control strategies of drives using variable-Reluctance Machine variable-Reluctance Machine (VRM). The classical-control algorithms for example of derived full proportional action may prove sufficient if the requirements on the accuracy and performance of systems are not too strict. In the opposite case and particularly when the controlled part is submitted to strong nonlinearity and to temporal variations, control techniques must be designed which ensure the robustness of the process with respect to the uncertainties on the parameters and their variations. These techniques include artificial-intelligence-based techniques constituted of neural networks and fuzzy logic. This technique has the ability to replace PID regulators by nonlinear ones using the human brain’s reasoning and functioning and is simulated by using MATLAB/Simulink software. Finally, by using obtained waveforms, these results will be compared.

Keywords


fuzzy logic control machine (VRM); neural command; pid command; variable reluctance;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i2.pp1893-1904

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).