Optimetric analysis of 1x4 array of circular microwave patch antennas for mammographic applications using adaptive gradient descent algorithm

Ojo O. Adedayo, Moses Oluwafemi Onibonoje, Ogunlade Michael Adegoke

Abstract


Interest in the use of microwave equipment for breast imagery is on the increase owing to its safety, ease of use and friendlier cost. However, some of the pertinent blights of the design and optimization of microwave antenna include intensive consumption of computing resources, high price of software acquisition and very large optimization time. This paper therefore attempts to address these concerns by devising a rapid means of designing and optimizing the performance of a 1×4 array of circular microwave patch antenna for breast imagery applications by deploying the adaptive gradient descent algorithm (AGDA) for a circumspectly designed artificial neural network. In order to cross validate the findings of this work, the results obtained using the adaptive gradient descent algorithm was compared with those obtained with the deployment of the much reported Levenberg-Marquardt algorithm for the same dataset over same frequency range and training constraints. Analysis of the performance of the AGDA neural network shows that the approach is a viable and accurate technique for rapid design and analysis of arrays of circular microwave patch antenna for breast imaging.

Keywords


Gradient descent algorithm; Neural network; Patch antenna; Breast imaging; HFSS

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i6.pp5159-5164

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).