A time efficient and accurate retrieval of range aggregate queries using fuzzy clustering means (FCM) approach

A. Murugan, D. Gobinath, S. Ganesh Kumar, B. Muruganantham, Sarubala Velusamy

Abstract


Massive growth in the big data makes difficult to analyse and retrieve the useful information from the set of available data’s. Statistical analysis: Existing approaches cannot guarantee an efficient retrieval of data from the database. In the existing work stratified sampling is used to partition the tables in terms of static variables. However k means clustering algorithm cannot guarantees an efficient retrieval where the choosing centroid in the large volume of data would be difficult. And less knowledge about the static variable might leads to the less efficient partitioning of tables. Findings: This problem is overcome in the proposed methodology by introducing the FCM clustering instead of k means clustering which can cluster the large volume of data which are similar in nature. Stratification problem is overcome by introducing the post stratification approach which will leads to efficient selection of static variable. Improvements: This methodology leads to an efficient retrieval process in terms of user query within less time and more accuracy.

Keywords


Post stratification sampling; Big Data; FCM algorithm

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i1.pp415-420

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).