An analytical model for the current voltage characteristics of GaN-capped AlGaN/GaN and AlInN/GaN HEMTs including thermal and self-heating effects

A. Bellakhdar, A. Telia, J. L. Coutaz

Abstract


We present an analytical model for the I-V characteristics of AlGaN/GaN and AlInN/GaN high electron mobility transistors (HEMT). Our study focuses on the influence of a GaN capping layer, and of thermal and self-heating effects. Spontaneous and piezoelectric polarizations at Al (Ga,In)N/GaN and GaN/Al(Ga,In)N interfaces have been incorporated in the analysis. Our model permits to fit several published data. Our results indicate that the GaN cap layer reduces the sheet density of the two-dimensional electron gas (2DEG), leading to a decrease of the drain current, and that n+-doped GaN cap layer provides a higher sheet density than undoped one. In n+GaN/AlInN/GaN HEMTs, the sheet carrier concentration is higher than in n+GaN/AlGaN/GaN HEMTs, due to the higher spontaneous polarization charge and conduction band discontinuity at the substrate/barrier layer interface.

Keywords


GaN cap; GaN/AlGaN/GaN; GaN/AlInN/GaN; HEMT; self-heating effect;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i2.pp1791-1804

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).