Trust model genetic node recovery based on cloud theory for underwater acoustic sensor network

Buddesab T, Thriveni J, Venugopal K R

Abstract


Underwater Acoustic Sensor Networks [UASNs] are becoming a very growing research topic in the field of WSNs. UASNs are harmful by many attacks such as Jamming attacks at the physical layer, Collision attacks at the data link layer and Dos attacks at the network layer. UASNs has a unique characteristic such as unreliable communication, mobility, and computation of underwater sensor network. Because of this the traditional security mechanism, e.g. cryptographic, encryption, authorization and authentications are not suitable for UASNs. Many trust mechanisms of TWSNs [Terrestrial Wireless Sensor Networks] had proposed to UASNs and failed to provide security for UASNs environment, due to dynamic network structure and weak link connection between sensors. In this paper, a novel Trust Model Genetic Algorithm based on Cloud Theory [TMC] for UASNs has been proposed. The TMC-GA suggested a genetic node recovery algorithm to improve the TMC network in terms of better network lifetime, residual energy and total energy consumption. Also ensures that sensor nodes are participating in the rerouting in the routing discovery and performs well in terms of successful packet delivery. Simulation result provides that the proposed TMC-Genetic node recovery algorithm outperforms compared to other related works in terms of the number of hops, end-to-end delay, total energy consumption, residual energy, routing overhead, throughput and network lifetime.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i5.pp3759-3771

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).