Performance evaluation of random forest with feature selection methods in prediction of diabetes

Raghavendra S, Santosh Kumar J

Abstract


Data mining is nothing but the process of viewing data in different angle and compiling it into appropriate information. Recent improvements in the area of data mining and machine learning have empowered the research in biomedical field to improve the condition of general health care. Since the wrong classification may lead to poor prediction, there is a need to perform the better classification which further improves the prediction rate of the medical datasets. When medical data mining is applied on the medical datasets the important and difficult challenges are the classification and prediction. In this proposed work we evaluate the PIMA Indian Diabtes data set of UCI repository using machine learning algorithm like Random Forest along with feature selection methods such as forward selection and backward elimination based on entropy evaluation method using percentage split as test option. The experiment was conducted using R studio platform and we achieved classification accuracy of 84.1%. From results we can say that Random Forest predicts diabetes better than other techniques with less number of attributes so that one can avoid least important test for identifying diabetes.


Keywords


Data mining;Classification accuracy;Feature selection methods;Percentage split;Random forest

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i1.pp353-359

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).