Continuous kannada speech segmentation and speech recognition based on threshold using MFCC And VQ

Vanajakshi Puttaswamy Gowda, Mathivanan Murugavelu, Senthil Kumaran Thangamuthu

Abstract


Continuous speech segmentation and its  recognition is playing important role in natural language processing. Continuous context based Kannada speech segmentation depends  on context, grammer and semantics rules present in the kannada language. The significant feature extraction of kannada speech signal  for recognition system is quite exciting for researchers. In this paper proposed method  is  divided into two parts. First part of the method is continuous kannada speech signal segmentation with respect to the context based is carried out  by computing  average short term energy and its spectral centroid coefficients of  the speech signal present in the specified window. The segmented outputs are completely  meaningful  segmentation  for different scenarios with less segmentation error. The second part of the method is speech recognition by extracting less number Mel frequency cepstral coefficients with less  number of codebooks  using vector quantization .In this recognition is completely based on threshold value.This threshold setting is a challenging task however the simple method is used to achieve better recognition rate.The experimental results shows more efficient  and effective segmentation    with high recognition rate for any continuous context based kannada speech signal with different accents for male and female than the existing methods and also used minimal feature dimensions for training data.


Keywords


Feature extraction; Minimum distance; Short term energy; Spectral centroid; Speech recognition; Speech segmentation; Zero crossing rate

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i6.pp4684-4695

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).