Adaptive CSLBP compressed image hashing
Abstract
Hashing is popular technique of image authentication to identify malicious attacks and it also allows appearance changes in an image in controlled way. Image hashing is quality summarization of images. Quality summarization implies extraction and representation of powerful low level features in compact form. Proposed adaptive CSLBP compressed hashing method uses modified CSLBP (Center Symmetric Local Binary Pattern) as a basic method for texture extraction and color weight factor derived from L*a*b* color space. Image hash is generated from image texture. Color weight factors are used adaptively in average and difference forms to enhance discrimination capability of hash. For smooth region, averaging of colours used while for non-smooth region, color differencing is used. Adaptive CSLBP histogram is a compressed form of CSLBP and its quality is improved by adaptive color weight factor. Experimental results are demonstrated with two benchmarks, normalized hamming distance and ROC characteristics. Proposed method successfully differentiate between content change and content persevering modifications for color images.
Keywords
authentication; CSLBP; histogram; image hashing; L*a*b* color model;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i4.pp2982-2992
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).