Opinion mining using combinational approach for different domains
Abstract
An increase in use of web produces large content of information about products. Online reviews are used to make decision by peoples. Opinion mining is vast research area in which different types of reviews are analyzed. Several issues are existing in this area. Domain adaptation is emerging issue in opinion mining. Labling of data for every domain is time consuming and costly task. Hence the need arises for model that train one domain and applied it on other domain reducing cost aswell as time. This is called domain adaptation which is addressed in this paper. Using maximum entropy and clustering technique source domains data is trained. Trained data from source domain is applied on target data to labeling purpose A result shows moderate accuracy for 5 fold cross validation and combination of source domains for Blitzer et al (2007) multi domain product dataset.
Keywords
information systems; knowledge discovery; machine learning; opinion mining; text mining;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i4.pp3307-3313
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).