Bayesian distance metric learning and its application in automatic speaker recognition systems
Abstract
This paper proposes state-of the-art Automatic Speaker Recognition System (ASR) based on Bayesian Distance Learning Metric as a feature extractor. In this modeling, I explored the constraints of the distance between modified and simplified i-vector pairs by the same speaker and different speakers. An approximation of the distance metric is used as a weighted covariance matrix from the higher eigenvectors of the covariance matrix, which is used to estimate the posterior distribution of the metric distance. Given a speaker tag, I select the data pair of the different speakers with the highest cosine score to form a set of speaker constraints. This collection captures the most discriminating variability between the speakers in the training data. This Bayesian distance learning approach achieves better performance than the most advanced methods. Furthermore, this method is insensitive to normalization compared to cosine scores. This method is very effective in the case of limited training data. The modified supervised i-vector based ASR system is evaluated on the NIST SRE 2008 database. The best performance of the combined cosine score EER 1.767% obtained using LDA200 + NCA200 + LDA200, and the best performance of Bayes_dml EER 1.775% obtained using LDA200 + NCA200 + LDA100. Bayesian_dml overcomes the combined norm of cosine scores and is the best result of the short2-short3 condition report for NIST SRE 2008 data.
Keywords
automatic speaker recognition (ASR); language recognition evaluation (LRE); linear discrimination analysis (LDA); neighborhood component analysis (NCA); phone recognition and language modelling (PRLM);
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i4.pp2960-2967
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).